Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.188
Filtrar
1.
Eur Radiol Exp ; 8(1): 49, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622388

RESUMO

BACKGROUND: Automatic exposure control (AEC) plays a crucial role in mammography by determining the exposure conditions needed to achieve specific image quality based on the absorption characteristics of compressed breasts. This study aimed to characterize the behavior of AEC for digital mammography (DM), digital breast tomosynthesis (DBT), and low-energy (LE) and high-energy (HE) acquisitions used in contrast-enhanced mammography (CEM) for three mammography systems from two manufacturers. METHODS: Using phantoms simulating various breast thicknesses, 363 studies were acquired using all available AEC modes 165 DM, 132 DBT, and 66 LE-CEM and HE-CEM. AEC behaviors were compared across systems and modalities to assess the impact of different technical components and manufacturers' strategies on the resulting mean glandular doses (MGDs) and image quality metrics such as contrast-to-noise ratio (CNR). RESULTS: For all systems and modalities, AEC increased MGD for increasing phantom thicknesses and decreased CNR. The median MGD values (interquartile ranges) were 1.135 mGy (0.772-1.668) for DM, 1.257 mGy (0.971-1.863) for DBT, 1.280 mGy (0.937-1.878) for LE-CEM, and 0.630 mGy (0.397-0.713) for HE-CEM. Medians CNRs were 14.2 (7.8-20.2) for DM, 4.91 (2.58-7.20) for a single projection in DBT, 11.9 (8.0-18.2) for LE-CEM, and 5.2 (3.6-9.2) for HE-CEM. AECs showed high repeatability, with variations lower than 5% for all modes in DM, DBT, and CEM. CONCLUSIONS: The study revealed substantial differences in AEC behavior between systems, modalities, and AEC modes, influenced by technical components and manufacturers' strategies, with potential implications in radiation dose and image quality in clinical settings. RELEVANCE STATEMENT: The study emphasized the central role of automatic exposure control in DM, DBT, and CEM acquisitions and the great variability in dose and image quality among manufacturers and between modalities. Caution is needed when generalizing conclusions about differences across mammography modalities. KEY POINTS: • AEC plays a crucial role in DM, DBT, and CEM. • AEC determines the "optimal" exposure conditions needed to achieve specific image quality. • The study revealed substantial differences in AEC behavior, influenced by differences in technical components and strategies.


Assuntos
Mamografia , Intensificação de Imagem Radiográfica , Doses de Radiação , Intensificação de Imagem Radiográfica/métodos , Mamografia/métodos , Imagens de Fantasmas
2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 156-159, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605614

RESUMO

Objective: The distribution of the photon energy spectrum in isocenter plane of the medical linear accelerator and the influence of secondary collimator on the photon energy spectrum are studied. Methods Use the BEAMnrc program to simulate the transmission of the 6 MeV electrons and photons in 5 cm×5 cm,10 cm×10 cm,15 cm×15 cm and 20 cm×20 cm fields in treatment head of the medical linear accelerator, where a phase space file was set up at the isocenter plane to record the particle information passing through this plane. The BEAMdp program is used to analyze the phase space file, in order to obtain the distribution of the photon energy spectrum in isocenter plane and the influence of secondary collimator on the photon energy spectrum. Results: By analyzing the photon energy spectrum of a medical linear accelerator with a nominal energy of 6 MV, it is found that the secondary collimator has little effect on the photon energy spectrum; different fields have different photon energy spectrum distributions; the photon energy spectrum in different central regions of the same field have the same normalized distribution. Conclusion: In the dose calculation of radiation therapy, the influence of photon energy spectrum should be carefully considered.


Assuntos
Fótons , Planejamento da Radioterapia Assistida por Computador , Método de Monte Carlo , Fótons/uso terapêutico , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
3.
Medicine (Baltimore) ; 103(15): e37748, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608106

RESUMO

We aimed to investigate the accuracy of proton density fat fraction (PDFF) measurement of the lumbar vertebral bone marrow using chemical shift-encoded magnetic resonance imaging (CSE-MRI) with compressed sensing combined with parallel imaging (CSPI). This study recruited a commercially available phantom, and 43 patients. Fully sampled data without CSPI and under-sampled data with CSPI acceleration factors of 2.4, 3.6, and 4.8 were acquired using a 1.5T imaging system. The relationships between PDFF measurements obtained with the no-CSPI acquisition and those obtained with each CSPI acquisition were assessed using Pearson correlation coefficient (r), linear regression analyses, and Bland-Altman analysis. The intra- and inter-observer variabilities of the PDFF measurements were evaluated using the intraclass correlation coefficient. PDFF measurements obtained with all acquisitions showed a significant correlation and strong agreement with the reference PDFF measurement of the phantom. PDFF measurements obtained using CSE-MRI with and without CSPI were positively correlated (all acquisitions: r = 0.99; P < .001). The mean bias was -0.31% to -0.17% with 95% limits of agreement within ±2.02%. The intra- and inter-observer agreements were excellent (intraclass correlation coefficient: 0.988 and 0.981, respectively). A strong agreement and positive correlation were observed between the PDFF measurements obtained using CSE-MRI with and without CSPI. PDFF measurement of the lumbar vertebral bone marrow using CSE-MRI with CSPI can be acquired with a maximum reduction of approximately 75% in the acquisition time compared with a fully sampled acquisition.


Assuntos
Medula Óssea , Prótons , Humanos , Medula Óssea/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas
4.
Med Eng Phys ; 126: 104144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621846

RESUMO

The present study adopts a smartphone-based approach for the experimental characterization of coronary flows. Technically, Particle Tracking Velocimetry (PTV) measurements were performed using a smartphone camera and a low-power continuous wave laser in realistic healthy and stenosed phantoms of left anterior descending artery with inflow Reynolds numbers approximately ranging from 20 to 200. A Lagrangian-Eulerian mapping was performed to convert Lagrangian PTV velocity data to a Eulerian grid. Eulerian velocity and vorticity data obtained from smartphone-based PTV measurements were compared with Particle Image Velocimetry (PIV) measurements performed with a smartphone-based setup and with a conventional setup based on a high-power double-pulsed laser and a CMOS camera. Smartphone-based PTV and PIV velocity flow fields substantially agreed with conventional PIV measurements, with the former characterized by lower average percentage differences than the latter. Discrepancies emerged at high flow regimes, especially at the stenosis throat, due to particle image blur generated by smartphone camera shutter speed and image acquisition frequency. In conclusion, the present findings demonstrate the feasibility of PTV measurements using a smartphone camera and a low-power light source for the in vitro characterization of cardiovascular flows for research, industrial and educational purposes, with advantages in terms of costs, safety and usability.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Smartphone , Reologia/métodos , Velocidade do Fluxo Sanguíneo , Imagens de Fantasmas
5.
Opt Lett ; 49(7): 1741-1744, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560851

RESUMO

Speckle-correlation optical scattering imaging (SCOSI) has shown the potential for non-invasive biomedical diagnostic applications, which directly utilizes the scattering patterns to reconstruct the deep and non-line-of-sight objects. However, the course of the translation of this technique to preclinical biomedical imaging applications has been postponed by the following two facts: 1) the field of view of SCOSI was significantly limited by the optical memory effect, and 2) the molecular-tagged functional imaging of the biological tissues remains largely unexplored. In this work, a proof-of-concept design of the first-generation widefield functional SCOSI (WF-SCOSI) system was presented for simultaneously achieving mesoscopic mapping of fluid morphology and flow rate, which was realized by implementing the concepts of scanning synthesis and fluorescence scattering flowmetry. The ex vivo imaging results of the fluorescence-labeled large-scale blood vessel network phantom underneath the strong scatters demonstrated the effectiveness of WF-SCOSI toward non-invasive hemodynamic imaging applications.


Assuntos
Diagnóstico por Imagem , Hemodinâmica , Imagens de Fantasmas , Reologia , Desenho de Equipamento , Imagem Óptica/métodos
6.
Sci Rep ; 14(1): 8253, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589478

RESUMO

This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.


Assuntos
Algoritmos , Aprendizado Profundo , Água , Calibragem , Imageamento por Ressonância Magnética/métodos , Músculos/diagnóstico por imagem , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
7.
J Comput Aided Mol Des ; 38(1): 17, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570405

RESUMO

The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolutionary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called POET Regex , where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for the efficient identification of peptides with therapeutic or diagnostic potential.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Peptídeos
8.
BMC Oral Health ; 24(1): 420, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580965

RESUMO

BACKGROUND: Interstitial brachytherapy is a form of intensive local irradiation that facilitates the effective protection of surrounding structures and the preservation of organ functions, resulting in a favourable therapeutic response. As surgical robots can perform needle placement with a high level of accuracy, our team developed a fully automatic radioactive seed placement robot, and this study aimed to evaluate the accuracy and feasibility of fully automatic radioactive seed placement for the treatment of tumours in the skull base. METHODS: A fully automatic radioactive seed placement robot was established, and 4 phantoms of skull base tumours were built for experimental validation. All the phantoms were subjected to computed tomography (CT) scans. Then, the CT data were imported into the Remebot software to design the preoperative seed placement plan. After the phantoms were fixed in place, navigation registration of the Remebot was carried out, and the automatic seed placement device was controlled to complete the needle insertion and particle placement operations. After all of the seeds were implanted in the 4 phantoms, postoperative image scanning was performed, and the results were verified via image fusion. RESULTS: A total of 120 seeds were implanted in 4 phantoms. The average error of seed placement was (2.51 ± 1.44) mm. CONCLUSION: This study presents an innovative, fully automated radioactive particle implantation system utilizing the Remebot device, which can successfully complete automated localization, needle insertion, and radioactive particle implantation procedures for skull base tumours. The phantom experiments showed the robotic system to be reliable, stable, efficient and safe. However, further research on the needle-soft tissue interaction and deformation mechanism of needle puncture is still needed.


Assuntos
Implantes Dentários , Robótica , Neoplasias da Base do Crânio , Humanos , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Base do Crânio/cirurgia , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
9.
Med Image Anal ; 94: 103158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569379

RESUMO

Magnetic resonance (MR) images collected in 2D clinical protocols typically have large inter-slice spacing, resulting in high in-plane resolution and reduced through-plane resolution. Super-resolution technique can enhance the through-plane resolution of MR images to facilitate downstream visualization and computer-aided diagnosis. However, most existing works train the super-resolution network at a fixed scaling factor, which is not friendly to clinical scenes of varying inter-slice spacing in MR scanning. Inspired by the recent progress in implicit neural representation, we propose a Spatial Attention-based Implicit Neural Representation (SA-INR) network for arbitrary reduction of MR inter-slice spacing. The SA-INR aims to represent an MR image as a continuous implicit function of 3D coordinates. In this way, the SA-INR can reconstruct the MR image with arbitrary inter-slice spacing by continuously sampling the coordinates in 3D space. In particular, a local-aware spatial attention operation is introduced to model nearby voxels and their affinity more accurately in a larger receptive field. Meanwhile, to improve the computational efficiency, a gradient-guided gating mask is proposed for applying the local-aware spatial attention to selected areas only. We evaluate our method on the public HCP-1200 dataset and the clinical knee MR dataset to demonstrate its superiority over other existing methods.


Assuntos
Diagnóstico por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Articulação do Joelho , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
10.
PLoS One ; 19(4): e0296357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578749

RESUMO

OBJECTIVE: Quantitative values derived from PET brain images are of high interest for neuroscientific applications. Insufficient DT correction (DTC) can lead to a systematic bias of the output parameters obtained by a detailed analysis of the time activity curves (TACs). The DTC method currently used for the Siemens 3T MR BrainPET insert is global, i.e., differences in DT losses between detector blocks are not considered, leading to inaccurate DTC and, consequently, to inaccurate measurements masked by a bias. However, following careful evaluation with phantom measurements, a new block-pairwise DTC method has demonstrated a higher degree of accuracy compared to the global DTC method. APPROACH: Differences between the global and the block-pairwise DTC method were studied in this work by applying several radioactive tracers. We evaluated the impact on [11C]ABP688, O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and [15O]H2O TACs. RESULTS: For [11C]ABP688, a relevant bias of between -0.0034 and -0.0053 ml/ (cm3 • min) was found in all studied brain regions for the volume of distribution (VT) when using the current global DTC method. For [18F]FET-PET, differences of up to 10% were observed in the tumor-to-brain ratio (TBRmax), these differences depend on the radial distance of the maximum from the PET isocenter. For [15O]H2O, differences between +4% and -7% were observed in the GM region. Average biases of -4.58%, -3.2%, and -1.2% for the regional cerebral blood flow (CBF (K1)), the rate constant k2, and the volume of distribution VT were observed, respectively. Conversely, in the white matter region, average biases of -4.9%, -7.0%, and 3.8% were observed for CBF (K1), k2, and VT, respectively. CONCLUSION: The bias introduced by the global DTC method leads to an overestimation in the studied quantitative parameters for all applications compared to the block-pairwise method. SIGNIFICANCE: The observed differences between the two DTC methods are particularly relevant for research applications in neuroscientific studies as they affect the accuracy of quantitative Brain PET images.


Assuntos
Encéfalo , Oximas , Tomografia por Emissão de Pósitrons , Piridinas , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Imagens de Fantasmas , Cabeça , Imageamento por Ressonância Magnética
11.
Radiat Oncol ; 19(1): 40, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509543

RESUMO

PURPOSE: To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS: Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS: The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS: The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Radiometria/métodos , Método de Monte Carlo , Imagens de Fantasmas , Calibragem
12.
BMC Urol ; 24(1): 65, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515108

RESUMO

BACKGROUND: This work aimed to identify a method to achieve improved stone targeting and safety in shockwave lithotripsy by accounting for respiration. METHODS: We set up an electromotive device simulating renal movement during respiration to place artificial stones within the phantom gel, measuring stone weight changes before and after shockwave exposure and the cavitation damage. We conducted clinical trials using respiratory masks and sensors to monitor and analyze patient respiration during shockwave lithotripsy. RESULTS: The in vitro efficiency of lithotripsy was higher when adjusted for respiration than when respiration was not adjusted for. Slow respiration showed the best efficiency with higher hit rates when not adjusted for respiration. Cavitation damage was also lowest during slow respiration. The clinical study included 52 patients. Respiratory regularity was maintained above 90% in regular respiration. When respiration was regular, the lithotripsy rate was about 65.6%, which stayed at about 40% when respiration was irregular. During the lithotripsy, the participants experienced various events, such as sleep, taking off their masks, talking, movement, coughing, pain, nervousness, and hyperventilation. The generation of shockwaves based on respiratory regularity could reduce pain in patients. CONCLUSION: These results suggest a more accurate lithotripsy should be performed according to respiratory regularity.


Assuntos
Cálculos Renais , Litotripsia , Humanos , Cálculos Renais/terapia , Rim , Litotripsia/métodos , Projetos de Pesquisa , Imagens de Fantasmas , Dor , Resultado do Tratamento
13.
Technol Cancer Res Treat ; 23: 15330338241239144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515394

RESUMO

Background: This review investigates peripheral dose levels in electron beam treatments, comparing different manufacturers including Varian, Elekta, and Siemens. Accurate measurement of peripheral dose is vital for patient safety and precise radiation delivery in radiation therapy. Methods: This review followed PRISMA standards, conducting a comprehensive literature search from 1978 to July 2023. Emphasis was on identifying studies analyzing peripheral doses related to various electron beam energies, beam angle, field sizes, cutouts, and applicator combinations. Three major databases including PubMed, Web of Science, and Scopus were searched. Results: A total of 7 articles were included in this review. Strategies such as bolus materials, personalized cutouts, and optimal treatment procedures have all been developed to reduce peripheral radiation exposure and enhance patient safety. Ongoing research in this field is focused on further minimizing the risks associated with out-of-field radiation by improving dose delivery systems. Conclusion: The literature emphasizes importance of precision in electron beam radiation therapy, highlighting the critical need for managing peripheral doses and optimizing hardware to ensure patient safety. It advocates for the use of advanced tools and protocols to maintain a balance between effective treatment while protecting healthy tissues. Continuous research, careful treatment planning, and effective management of peripheral doses are essential.


Assuntos
Elétrons , Planejamento da Radioterapia Assistida por Computador , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Aceleradores de Partículas
14.
J Biomed Opt ; 29(2): 026004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38425720

RESUMO

Significance: Fluorescence lifetime imaging (FLI) plays a pivotal role in enhancing our understanding of biological systems, providing a valuable tool for non-invasive exploration of biomolecular and cellular dynamics, both in vitro and in vivo. Its ability to selectively target and multiplex various entities, alongside heightened sensitivity and specificity, offers rapid and cost-effective insights. Aim: Our aim is to investigate the multiplexing capabilities of near-infrared (NIR) FLI within a scattering medium that mimics biological tissues. We strive to develop a comprehensive understanding of FLI's potential for multiplexing diverse targets within a complex, tissue-like environment. Approach: We introduce an innovative Monte Carlo (MC) simulation approach that accurately describes the scattering behavior of fluorescent photons within turbid media. Applying phasor analyses, we enable the multiplexing of distinct targets within a single FLI image. Leveraging the state-of-the-art single-photon avalanche diode (SPAD) time-gated camera, SPAD512S, we conduct experimental wide-field FLI in the NIR regime. Results: Our study demonstrates the successful multiplexing of dual targets within a single FLI image, reaching a depth of 1 cm within tissue-like phantoms. Through our novel MC simulation approach and phasor analyses, we showcase the effectiveness of our methodology in overcoming the challenges posed by scattering media. Conclusions: This research underscores the potential of NIR FLI for multiplexing applications in complex biological environments. By combining advanced simulation techniques with cutting-edge experimental tools, we introduce significant results in the non-invasive exploration of biomolecular dynamics, to advance the field of FLI research.


Assuntos
Imagem Óptica , Fótons , Simulação por Computador , Imagens de Fantasmas , Corantes
15.
J Biomed Opt ; 29(Suppl 1): S11527, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38464883

RESUMO

Significance: We developed a high-speed optical-resolution photoacoustic microscopy (OR-PAM) system using a high-repetition-rate supercontinuum (SC) light source and a two-axes Galvano scanner. The OR-PAM system enabled real-time imaging of optical absorbers inside biological tissues with excellent excitation wavelength tunability. Aim: In the near-infrared (NIR) wavelength range, high-speed OR-PAM faces limitations due to the lack of wavelength-tunable light sources. Our study aimed to enable high-speed OR-PAM imaging of various optical absorbers, including NIR contrast agents, and validate the performance of high-speed OR-PAM in the detection of circulating tumor cells (CTCs). Approach: A high-repetition nanosecond pulsed SC light source was used for OR-PAM. The excitation wavelength was adjusted by bandpass filtering of broadband light pulses produced by an SC light source. Phantom and in vivo experiments were performed to detect tumor cells stained with an NIR contrast agent within flowing blood samples. Results: The newly developed high-speed OR-PAM successfully detected stained cells both in the phantom and in vivo. The phantom experiment confirmed the correlation between the tumor cell detection rate and tumor cell concentration in the blood sample. Conclusions: The high-speed OR-PAM effectively detected stained tumor cells. Combining high-speed OR-PAM with molecular probes that stain tumor cells in vivo enables in vivo CTC detection.


Assuntos
Dispositivos Ópticos , Técnicas Fotoacústicas , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Análise Espectral , Imagens de Fantasmas
16.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38544110

RESUMO

Compact high-frequency arrays are of interest for clinical and preclinical applications in which a small-footprint or endoscopic device is needed to reach the target anatomy. However, the fabrication of compact arrays entails the connection of several dozens of small elements to the imaging system through a combination of flexible printed circuit boards at the array end and micro-coaxial cabling to the imaging system. The methods currently used, such as wire bonding, conductive adhesives, or a dry connection to a flexible circuit, considerably increase the array footprint. Here, we propose an interconnection method that uses vacuum-deposited metals, laser patterning, and electroplating to achieve a right-angle, compact, reliable connection between array elements and flexible-circuit traces. The array elements are thickened at the edges using patterned copper traces, which increases their cross-sectional area and facilitates the connection. We fabricated a 2.3 mm by 1.7 mm, 64-element linear array with elements at a 36 µm pitch connected to a 4 cm long flexible circuit, where the interconnect adds only 100 µm to each side of the array. Pulse-echo measurements yielded an average center frequency of 55 MHz and a -6 dB bandwidth of 41%. We measured an imaging resolution of 35 µm in the axial direction and 114 µm in the lateral direction and demonstrated the ex vivo imaging of porcine esophageal tissue and the in vivo imaging of avian embryonic vasculature.


Assuntos
Transdutores , Animais , Suínos , Desenho de Equipamento , Ultrassonografia , Imagens de Fantasmas , Impedância Elétrica
17.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38544238

RESUMO

The development of new medical-monitoring applications requires precise modeling of effects on the human body as well as the simulation and the emulation of realistic scenarios and conditions. The first aim of this paper is to develop realistic and adjustable 3D human-body emulation platforms that could be used for evaluating emerging microwave-based medical monitoring/sensing applications such as the detection of brain tumors, strokes, and breast cancers, as well as for capsule endoscopy studies. New phantom recipes are developed for microwave ranges for phantom molds with realistic shapes. The second aim is to validate the feasibility and reliability of using the phantoms for practical scenarios with electromagnetic simulations using tissue-layer models and biomedical antennas. The third aim is to investigate the impact of the water temperature in the phantom-cooking phase on the dielectric properties of the stabilized phantom. The evaluations show that the dielectric properties of the developed phantoms correspond closely to those of real human tissue. The error in dielectric properties varies between 0.5-8%. In the practical-scenario simulations, the differences obtained with phantoms-based simulations in S21 parameters are 0.1-13 dB. However, the differences are smaller in the frequency ranges used for medical applications.


Assuntos
Neoplasias da Mama , Micro-Ondas , Humanos , Feminino , Reprodutibilidade dos Testes , Imagens de Fantasmas , Simulação por Computador
18.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38544247

RESUMO

Assessing bladder function is pivotal in urological health, with bladder volume a critical indicator. Traditional devices, hindered by high costs and cumbersome sizes, are being increasingly supplemented by portable alternatives; however, these alternatives often fall short in measurement accuracy. Addressing this gap, this study introduces a novel A-mode ultrasound-based bladder volume estimation algorithm optimized for portable devices, combining efficient, precise volume estimation with enhanced usability. Through the innovative application of a wavelet energy ratio adaptive denoising method, the algorithm significantly improves the signal-to-noise ratio, preserving critical signal details amidst device and environmental noise. Ultrasonic echoes were employed to acquire positional information on the anterior and posterior walls of the bladder at several points, with an ellipsoid fitted to these points using the least squares method for bladder volume estimation. Ultimately, a simulation experiment was conducted on an underwater porcine bladder. The experimental results indicate that the bladder volume estimation error of the algorithm is approximately 8.3%. This study offers a viable solution to enhance the accuracy and usability of portable devices for urological health monitoring, demonstrating significant potential for clinical application.


Assuntos
Algoritmos , Bexiga Urinária , Animais , Suínos , Bexiga Urinária/diagnóstico por imagem , Ultrassonografia , Simulação por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Análise de Ondaletas
19.
Phys Med Biol ; 69(9)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38537307

RESUMO

Objective.Up to this point, 1.5 T linac-compatible coil array layouts have been restricted to one or two rows of coils because of the desire to place radiation-opaque circuitry adjacent to the coils and outside the window through which the linac beam travels. Such layouts can limit parallel imaging performance. The purpose of this work was to design and build a three-row array in which remotely located circuits permitted a central row of coils while preserving the radiolucent window.Approach.The remote circuits consisted of a phase shifter to cancel the phase introduced by the coaxial link between the circuit and coil, followed by standard components for tuning, matching, detuning, and preamplifier decoupling. Tests were performed to compare prototype single-channel coils with remote or local circuits, which were followed by tests comparing two and three-row arrays .Main results.The single-channel coil with the remote circuit maintained 85% SNR at depths of 30 mm or more as compared to a coil with local circuit. The three-row array provided similar SNR as the two-row array, along with geometry factor advantages for parallel imaging acceleration in the head-foot direction.Significance.The remote circuit strategy could potentially support future MR-linac arrays by allowing greater flexibility in array layout compared to those confined by local circuits, which can be leveraged for parallel imaging acceleration.


Assuntos
Carmustina , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Etoposídeo , Desenho de Equipamento , Razão Sinal-Ruído
20.
Phys Med Biol ; 69(9)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38537308

RESUMO

Objective.A Monte Carlo virtual source model named PHID (photon from Ion decay) that generates photons emitted in the complex decay chain process of alpha-emitter radionuclides is proposed, typically for use during the simulation of SPECT image acquisition.Approach.Given an alpha-emitter radionuclide, the PHID model extracts from Geant4 databases the photon emission lines from all decaying daughters for both isometric transition and atomic relaxation processes. According to a given time range, abundances and activities in the decay chain are considered thanks to the Bateman equations, taking into account the decay rates and the initial abundances.Main results.PHID is evaluated by comparison with analog Monte Carlo simulation. It generates photons with the correct energy and temporal distribution, avoiding the costly simulation of the complete decay chain thus decreasing the computation time. The exact time gain depends on the simulation setup. As an example, it is 30× faster for simulating 1 MBq of225Ac in water for 1 section Moreover, for225Ac, PHID was also compared to a simplified source model with the two main photon emission lines (218 and 440 keV). PHID shows that 2 times more particles are simulated and 60% more counts are detected in the images.Significance.PHID can simulate any alpha-emitter radionuclide available in the Geant4 database. As a limitation, photons emitted from Bremsstrahlung are ignored, but they represent only 0.7% of the photons above 30 keV and are not significant for SPECT imaging. PHID is open-source, available in GATE 10, and eases the investigation of imaging photon emission from alpha emitters.


Assuntos
Radioisótopos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Fótons , Imagens de Fantasmas , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...